If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9t^2+48t-100=0
a = 9; b = 48; c = -100;
Δ = b2-4ac
Δ = 482-4·9·(-100)
Δ = 5904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5904}=\sqrt{144*41}=\sqrt{144}*\sqrt{41}=12\sqrt{41}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-12\sqrt{41}}{2*9}=\frac{-48-12\sqrt{41}}{18} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+12\sqrt{41}}{2*9}=\frac{-48+12\sqrt{41}}{18} $
| -5t²+20t+60=0 | | 2x^2-20x-11=0 | | 6u+18=0 | | -3s–7=-4 | | -5t+20t+60=0 | | 3s–7=-4 | | 9+8a=1 | | 3(x-1)-2(6-4x)=2 | | -z/2+24=36 | | 20s-13=67 | | 150=300/x | | 4+4d=6+d | | 4(c+2)=c | | 7(2t+4)=4(2t-7) | | -8+d/15-4=0 | | x/12+20=20 | | 5w+29=79 | | -27+4y-9=0 | | 22x=36/22 | | 3z+20=4z+6 | | 6y-4y+9y=215 | | -1/5x-18-5=0 | | 31+f/14=42 | | -9t-15-66=0 | | 6/7+7y/9=8 | | 4y+6=10y+13 | | -18+13c=8 | | 3(8-s)+4=-4 | | 2x+1-6×=13 | | 161=69-x | | 6x+4=2(2x+−5) | | 6x+15=3x+12 |